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ABSTRACT
The current state-of-the-art for large language model (LLM) inference serving is focused on the online scenario,
where new requests continuously enter the system, and the main priority is meeting tight latency SLO constraints.
These systems are not optimized for the use case of offline inference, which involves generating outputs for a series
of prompts that are all known before serving begins. In the offline case, metrics such as time-to-first-token (TTFT)
and time-between-tokens (TBT) are unimportant, and the primary focus is on minimizing makespan (end-to-end
completion time) and cost subject to memory constraints. We propose Vasuki, an offline inference-focused LLM
serving system built on top of Sarathi-Serve that utilizes KV cache offloading and bin packing to effectively
navigate this memory-makespan-cost tradeoff space. We demonstrate that our method provides a 9% end-to-end
speedup for summarization tasks and 36% end-to-end speedup for translation tasks compared to SOTA on the same
hardware. Vasuki also contributes to a reduction in total cost, due to reducing active GPU time by minimizing the
makespan and by enabling the use of cheaper hardware to approach the performance of hardware with twice the

memory capacity running a SoTA inference system.

1 INTRODUCTION

LLM offline inference involves running inference against
large amounts of input data at a time. Offline inference in
production is often run with scheduled jobs repeated after
some time interval with large amounts of data (Kamsetty
et al., 2023). The objective for offline inference can simply
be viewed as minimizing the makespan, the end-to-end
time for serving a batch of data (MathWorks, 2024). This
differs from online inference, where the environment must
continuously serve requests that enter. In particular, the
objective for online inference is to effectively manage the
latency/throughput tradeoff space since requests may arrive
at different points of time, and the system needs to show
continuous progress for better user experience.

Today, vLLM and the Sarathi paper are the state-of-the-art
solutions for both offline and online inference (Kwon et al.,
2023) (Agrawal et al., 2023). However, these frameworks
do not treat the problem of offline inference differently
even though the key objective and the a priori information
differ. There is an opportunity gap to deliver a better solution
by taking advantage of the extra information and fewer
constraints present when a workload is offline (order of
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request completion and latency do not matter).

In addition, the cost dimension has not been explicitly op-
timized on for offline inference workloads. Cheaper GPU
hardware introduces the tradeoff of less memory, and since
memory is crucial to increase batch sizes (and thus through-
put), optimizing for memory-constrained scenarios is vital
to a cost-aware solution.

We present Vasuki, a first-class solution for offline LLM
inference that utilizes KV cache offloading and bin packing
to effectively navigate this memory-makespan-cost tradeoff
space. The main contributions of this paper are:

1. Dynamic KV-cache CPU memory offloading based on
predicted offloading and batch execution time

2. Greedy request bin-packing scheme to help navigate
the memory constraints introduced by cheaper GPU
variants

2 RELATED WORK

The state-of-the-art in LLM inference serving primarily ad-
dresses online scenarios, where latency-centric metrics like
time-to-first-token (TTFT) and time-between-tokens (TBT)
dominate the optimization goals. However, several systems,
while designed for different use cases, offer insights or par-
tial solutions relevant to offline inference.

vLLM introduces an innovative memory management sys-
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tem optimized for online inference workloads by leveraging
a dynamic Key-Value (KV) cache system. This approach
effectively reduces memory fragmentation and maximizes
GPU utilization, achieving low latency and high throughput
(Kwon et al., 2023). While vLLM excels in handling bursty,
real-time requests, its focus on online inference leaves it sub-
optimal for offline scenarios. The absence of mechanisms
like batch reordering or speculative execution tailored to
minimize makespan hinders its applicability to offline work-
loads, where such features could exploit the static nature of
task batches for efficiency gains.

Sarathi-Serve builds off of vLLM and introduces chunked-
prefills in order to allow for stall-free schedules because
new requests get added to a batch without any pauses in the
decode (Agrawal et al., 2024b). By doing so, Sarathi-Serve
is able to collapse the tradeoff space of throughput and time-
between-tokens (TBT) tail latency, and as a result, serve
high throughput with low latency. However, Sarathi-Serve
is not fully optimized for offline serving, so our project
builds off the chunked-prefill technique to develop a serving
system that prioritizes optimizing throughput for inference.

SpecInfer proposes speculative decoding techniques to ac-
celerate LLM inference by parallelizing partial token gener-
ation across multiple speculative paths (Miao et al., 2024).
This method mitigates latency bottlenecks in online settings
by reducing the dependence on sequential decoding. Al-
though Speclnfer’s speculative decoding could be adapted
for offline inference to speed up the generation of pre-
determined batches, the system’s design prioritizes real-time
token generation rather than optimizing for offline-specific
metrics like cost or makespan. Thus, SpecInfer highlights a
promising avenue—Ileveraging speculative decoding—but
does not comprehensively address the offline inference
paradigm.

Work such as FlexGen has attempted to tackle the tradeoff
space induced by offline LLM inference serving. FlexGen
focuses on enabling efficient LLM inference under strict
resource constraints, particularly in low-memory environ-
ments (Sheng et al., 2023). By employing offloading tech-
niques to CPU and disk, FlexGen introduces flexibility in
balancing memory and compute trade-offs. While primar-
ily targeting resource efficiency, its offloading mechanisms
align well with the needs of offline inference, where cost
minimization is often critical. However, FlexGen does not
fully exploit the deterministic nature of offline workloads
for optimizations like bin packing or scheduling strategies.

ConServe discusses co-locating offline batch jobs with on-
line serving and harvesting GPUs from online serving to
make progress on offline jobs (Qiao et al., 2024). This work
introduces a new way to reduce the cost of offline serving
but does not contribute to minimizing an offline job’s total
makespan, since the running offline jobs will be preempted

by online jobs at peak usage times.

Finally, DéjaVu proposes a KV cache streaming scheme
as part of its solution. But it neither focuses on cost nor
considers offloading of the KV cache at the same granularity
as Vasuki. DéjaVu focuses on the KV cache at the micro-
batch pipeline level, and they always stream the KV cache
layer-by-layer. They perform no bandwidth prediction and
thus assume favorable hardware deployments (Strati et al.,
2024).

3 BACKGROUND [LISA]

In this section, we describe the architecture and typical
inference procedure for LLMs. We also discuss metrics
typically used in online LLM inference serving and why
these are unimportant for the offline use case.

3.1 LLM Architecture and LLM Inference

LLM Architecture Currently, most popular LLMs are
decoder-only transformer models, such as GPT-3 (Brown
et al., 2020) and LLaMA (Grattafiori et al., 2024). These
models have a stack of layers, each structured in a similar
way. Specifically, each layer has a self-attention module and
a feed-forward network (FFN) (Alammar, 2018).

The self-attention module is a core part of the transformer
architecture and allows for each part of a sequence to take
into account the previous parts for generating a contextual
representation. During computation, specific Query (Q),
Key (K) and Value (V') vectors correspond to each input
token. These input tokens are obtained via a linear trans-
formation. From there, the attention operator computes a
semantic relationship between the tokens by performing a
dot-product of the ) and K vectors of all preceding tokens.
Afterwards, in order to compute a weighted average of the V'
vector, the softmax operation is used to obtain the weights.
Additionally, the attention computation can have multiple
heads, where all the outputs can then be combined using a
linear transformation.

The FFN typically has two linear transformations, with a
non-linear transformation in between the two layers. The
first transforms an input token embedding of dimension h to
a higher dimension. From there, there is an activation func-
tion applied, such as ReLU. Finally, the second linear layer
takes the token embedding back to the original dimension
h.

LLM Inference Due to the nature of the LLM architecture,
LLM inference can be considered as consisting of two dis-
tinct phases: a prefill and decode phase. During the prefill
phase, the input prompt is processed and then produces the
first output token. Next, the decode phase takes over and
generates output tokens one at a time. Finally, the token
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generated in the previous step is passed through the model
to generate the next token. This process continues until an
end-of-sequence token is generated. One key aspect is that
the decode phase requires access to all the keys and values
associated with the previously processed tokens to perform
the attention operation. One common technique to avoid
recomputation is for activations to be stored in a KV cache.

The prefill phase is compute-bound since the prompt tokens
can be processed in parallel in a single iteration, allowing for
saturation of arithmetic intensity. On the other hand, decode
phase is memory-bound. This is because a full forward pass
of the model is required over a single token generated from
the previous iteration.

As a result, naively processing multiple requests sequen-
tially results in under-utilization of GPU compute. Thus,
LLM serving systems often leverage batching to process
multiple requests concurrently, which is effective when re-
quests are in the decode phase. PagedAttention allows for
even more requests to execute concurrently by addressing
the fragmentation issue in the KV cache (Kwon et al., 2023).
Sarathi-Serve also helps to mitigate the issue by implement-
ing stall-free batching by using chunked-prefills to execute
prefills during the decode phase, which takes advantage of
the compute slack (Agrawal et al., 2023). However, there
are still memory limitations that affect throughput, where
large chunk sizes are not possible when they exceed memory
capacity or when they result in too much swapping.

3.2 Offline LLM Inference Serving Metrics

Online serving metrics: Online LLM serving systems typ-
ically have service-level objectives (SLOs) that they need
to meet. The subject of these SLOs is often tail latency.
Typical metrics that online LLM inference serving systems
use include TTFT (time to first token) and TBT (time be-
tween token) (Nvidia, 2024). However, these metrics are
not ideal measures of success for offline serving systems
because latency is not a crucial concern.

Offline serving metrics: In offline inference serving, one
key metric we focus on instead is to measure offline model
serving cost, given by

QPS

del serving cost =
ToCET SEIVIRG COSL = ¢ /EP32 Gigaflop/ Watt

We measure QPS (queries per second) as the total number
of requests processed over the total amount of time. This
allows us to consider cost by taking into account the over-
all throughput of the system, which is a useful metric for
our use case of offline serving systems. The unit of cost
we choose to use also takes into consideration the compute
power and energy used over time. This is also an impor-
tant consideration in measuring the effectiveness of offline
serving system in commodity hardware settings. We also

examine makespan as a key metric. Considering makespan
allows us to prioritize overall system throughput. In this
manner, tail latency is no longer considered a key success
metric.

Offline serving is especially relevant to large companies,
which may need to run inference on a large amount of data,
in contexts that are not tail latency-sensitive. In these scenar-
ios, prioritizing high throughput (measured via makespan)
allows for more efficient usage of hardware, and thus lower
costs.

4 MOTIVATION

In this section, we discuss the need for a first-class solution
for offline LLM batch inference and the specific challenges
and opportunities that commodity hardware presents.

4.1 Lack of First-Class Solution

The vast majority of the current state-of-the-art for LLM
inference serving is focused on online use cases (Kwon
et al., 2023) (Agrawal et al., 2024b). In online inference
serving, new requests continuously arrive, and systems that
are tailored for such scenarios often need to handle bursty,
unpredictable workloads. As discussed in 3.2, such systems
must optimize for tail latency-related metrics such as TTFT
and TBT in order to provide a steady stream of tokens to end
users. Although offline inference also involves generating
outputs for a series of prompts, all of these prompts are
known prior to the beginning of serving. In addition, since
offline jobs do not need to optimize for user experience,
tail latency does not accurately quantify the goal of offline
serving systems. In particular, as discussed in 3.2, offline
serving systems must optimize for makespan and model
serving cost.

Despite offline inference serving having several use cases
for large companies, there does not exist any dedicated
system for this task. As discussed in 2, the current state-of-
the-art systems for LLM inference serving, Sarathi-Serve
and vLLM, do not explicitly handle the offline use case or
make adjustments to their serving mechanism for this en-
tirely different paradigm. That is, there exists no first-class
solution for offline LLM inference serving. In particular,
since offline serving systems need to optimize for different
metrics, existing online-focused systems must be modified
to enable them to effectively tackle the offline scenario. We
discuss concrete changes that can be made to existing LLM
inference serving systems in section 5.

4.2 Commodity Hardware Challenges and
Opportunities

The key to optimizing on the cost dimension is the choice
of hardware. For the purposes of this paper, we define com-
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Table 1. A10 and A40 Hardware Specifications

GPU Al10 A40
$/FP32 GIGAFLOP/ WATT $12 $52
MEMORY CAPACITY 24 GB 48 GB
COMPUTE 125 TF 150 TF
MEMORY BANDWIDTH 600 GB/s 696 GB/s

INTERCONNECT PCIE GEN 4: 64 GB/s

NVLINK: 112 GB/s, PCIE GEN 4: 64 GB/s

modity hardware as GPUs that have significantly cheaper
costs and similar compute within the same generation but
with a much lower memory capacity. This is evident from
1, which compares the various dimensions of the NVIDIA
A10 and A40 GPUs (Morgan, 2021). In particular, although
A10s and A40s have similar compute capabilities, an A10
has half the memory capacity of an A40. The lack of a
high-speed interconnect in commodity GPUs also presents
certain challenges in terms of deciding data, tensor, and
pipeline parallelism configurations. However, we focus on
the single-GPU case in this work.

4.3 Designing for Throughput

In order to examine which scheduler to build on top of, we
compared the execution time in three key setups: vLLM on
24 GB, Sarathi on 24 GB, and Sarathi on 1000 GB, as seen
in Figure 1. The first two setups were the main motivations
behind using Sarathi to build our solution. The chunked pre-
fills utilized by Sarathi are able to better distribute memory
overhead better than vLLM. This was significant to consider
in our case, because of our focus on throughput and memory
efficiency. After deciding on Sarathi, we wanted to explore
if memory limitations still played a role by conducting an
experiment in Vidur where we simulated essentially unlim-
ited memory for the same compute. We found that memory
limitations were still apparent since an increase in chunk
size can lead to memory capacity being exceeded as well
as too much swapping. These results motivated us to build
our scheduler on top of Sarathi and more closely examine
memory efficiency in order to improve throughput. These
results also showed that compute is not the limiting factor
in execution time, though we also note that at larger chunk
sizes more decodes are batched together and this memory
pressure means more requests will restart and contribute to
a slightly higher end-to-end time.

5 VASUKI: DESIGN AND IMPLEMENTATION

‘We now discuss the design and implementation of Vasuki,
a system that minimizes makespan for offline LLM batch
inference via two key techniques: KV cache offloading and

chunk size vs. makespan

A @ sarathi 1000 GB
A sarathi 24 GB
—— VLLM 24 GB
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Figure 1. Running Vidur on the arxiv summarization dataset to
compare Sarathi execution time with varied memory capacity,
against the baseline of VLLM

bin packing.

5.1 KYV Cache Offloading

Given the memory limitations imposed by commodity hard-
ware, we discuss algorithms for mitigating memory pressure
through the popular technique of offloading key-value (KV)
caches. Here, offloading refers to the technique of migrat-
ing tensors from GPU to CPU memory in order to reduce
GPU memory utilization. Since the KV cache size is di-
rectly proportional to the number of layers and the batch size
and grows quadratically with sequence length, offloading is
crucial to allow models to handle long sequences and oper-
ate on larger batch sizes. This not only alleviates memory
pressure but also improves compute utilization.

For the particular use case of LLM inference serving, we
observe that it is possible to offload the KV cache associ-
ated with certain decode layers of the model based on the
offloading time for these caches and the execution time for
a given layer. In order to estimate offloading time, we in-
tegrated bandwidth profiling for device-to-host (d2h) and
host-to-device (h2d) transfers on top of Vidur (Agrawal
et al., 2024a). In particular, we measured the d2h and h2d
transfer time for a variety of configurations up to 16GB and
calculate the corresponding bandwidths. We observed that,
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Algorithm 1 Maximize Number of Layers Offloaded

Algorithm 2 Minimize Number of Layers in Memory

1: =0

2 p = | Mumlayen |

3: while! < r do

4 mid=|4"]

5:  bandwidth = GetOffloadingBandwidth(layer_mem x
mid)

6:  d2h_time = CalculateTransferTime(layer_mem X
mid, bandwidth.d2h)

7 h2d_time = CalculateTransferTime(layer_-mem x
mad, bandwidth.h2d)

8:  offload_time = (d2h_time + h2d_time)

9:  offload_time += (alloc_time + dealloc_time) X
num_requests X maid

10:  if offload_time < exec_time x (num_layers—2xmid)

then
11: l=mid+1
12:  else
13: r=mid—1
14:  end if

15: end while
16: num_offload_layers =1 — 1

1: =0

2 p = | Mumloyen |

3: while! < r do

4 mid=|4"]

5:  bandwidth = GetOffloadingBandwidth(layer_mem x
mid)

6:  d2h_time = CalculateTransferTime(layer_mem X
mid, bandwidth.d2h)

7 h2d_time = CalculateTransferTime(layer_-mem x
mid, bandwidth.h2d)

8:  offload_time = (d2h_time + h2d_time)

9:  offload_time += (alloc_time + dealloc_time) X
num_requests X maid

10:  if offload_time < exec_time X mid then

11: r=mid —1

12:  else
13: l=mid+1
14:  end if

15: end while
16: layers_in_memory = (I + 1) x 2
17: num_offload_layers = num_layers — layers_in_memory

up to a certain threshold, the bandwidth increases linearly
with data size and then saturates for both d2h and h2d trans-
fer time. We estimate this saturation point based on the
percentage change in bandwidth from one data size to the
next. For data sizes below this threshold, we extend Vidur’s
random forest-based execution time predictor to estimate
transfer bandwidths (Agrawal et al., 2024a).

Based on the predicted offloading and loading bandwidths
and execution time, we propose an algorithm in 1 for KV
cache offloading. We choose to offload the KV cache of
decode layers in the model to the extent to which communi-
cation time can be perfectly overlapped with computation,
adding no additional makespan overhead due to offloading
and loading. Given a batch of requests, the algorithm be-
gins by calculating the execution time for the batch, the
number of decode requests in the batch, and the total mem-
ory required to store the KV caches associated with these
decode requests. It then performs binary search on the
bounds ! = 0 and r = LWJ (lines 1-2) to
determine the maximum number of layers that can be of-
floaded while perfectly overlapping communication with
computation. Note that num_decode_layers refers to the
number of decode blocks in the LLM model. The algo-
rithm determines the bandwidth, d2h transfer time, and h2d
transfer time and calculates the total offloading time ac-
cordingly (lines 5-9). Finally, the algorithm checks if it is
able to offload the KV cache for the first mid layers and
load the KV cache for the last mid layers within the time
it takes to complete the execution time of the remaining

(num_decode_layers — 2 x mid) layers (line 10). An ex-
ample of the working of this algorithm is provided in the
file animations/videos/offloading_algorit
hml .mp4 in the supplementary material.

We observe that it is impossible to offload the KV cache
associated with more than | 2um=decodelayers | q Jayerg
using this algorithm. Since this is less than half of the num-
ber of decode layers in the model, we also propose a cyclic
algorithm in 2 that allows offloading the KV cache of up to
num_decode_layers — 2 layers. Prior to the binary search,
this algorithm has the same initial steps as the previously
described algorithm. However, rather than directly max-
imizing the number of layers that can be offloaded, this
algorithm minimizes the number of layers that need to be
in GPU memory at any given time. Specifically, given mid
layers, the algorithm checks if it is able to offload the KV
cache of the previous mid layers and load the KV cache of
the next maid layers within the time it takes to complete the
execution time of the current layers (line 11). The algorithm
thus cyclically offloads the previous mid layers and loads
the next mid layers, ensuring that only 2 x mid layers are
in memory at a given time. This algorithm requires the
assumption that the execution time for each decode layer
of the LLM is the same across a given batch. Since SoTA
LLMs, such as Llama3, generally have identical decode
blocks, we find that this assumption is reasonable, espe-
cially for our current single-GPU focus (Grattafiori et al.,
2024). An example of the working of this algorithm is pro-
vided in the file animations/videos/offloading
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_algorithm?2.mp4 in the supplementary material.

Depending on the trace. model selection, or hardware de-
ployment, one algorithm may perform worse than the other.
As such, we use the maximum of the values calculated by
the two algorithms to determine both which algorithm to use
and the maximum number of layers that can be offloaded
while perfectly overlapping communication with computa-
tion. Offloading in such a manner allows us to minimize
memory pressure on the GPU and increase the number of
decode requests that can fit in a batch, leading to an overall
decrease in makespan.

5.2 Bin Packing

We noted first that there is a compute cost in evicting a
running request (restart) when the scheduler runs out of
memory and second, the observation from the Sarathi paper
that decodes can become compute-bound at high batch sizes
(Agrawal et al., 2023).

An optimal use of memory to limit the number of batch
iterations with the vVLLM scheduling policy is closely for-
mulated with the MILP in Appendix A. This formulation
takes unreasonably long to run even for a small number
of prompts and does not consider the growing rate of the
prompt (1 new token each time it is scheduled) and addi-
tional complexities of the Sarathi scheduler, where prefills
can be running for multiple time steps before decode can
begin. However, this motivates finding an approximate bin
packing scheme that approaches the optimal value of this
MILP.

Thus to avoid restarts at high batch sizes, the memory allo-
cation scheme first allocates enough GPU blocks to fit all
the KV layers for the prompt tokens. Since going forward,
not all the KV cache layers will be stored GPU memory,
greedily allocating in this format will help reduce restarts.

6 EVALUATION
6.1 Experimental Setup

We evaluate the efficacy of Vasuki’s offloading and bin pack-
ing technique extensively. The setup for our experiments is
described below.

6.1.1 Profiling Framework and Tools

We utilized Vidur, a simulator for large-scale LLM inference
workloads, as the primary framework for experimentation
(Agrawal et al., 2024a). Vidur provides detailed profiling
capabilities for various LLM components, such as attention
and MLP execution times. These features allowed us to
build accurate extensions to execution time predictors for
the simulation of CPU-GPU interconnect transfer times and
analyze bandwidth usage under different configurations. To

simulate real-world workloads, we incorporated represen-
tative traces from offline inference scenarios, as detailed
below.

6.1.2 Hardware Profiling

Our experiments spanned GPU architectures including
NVIDIA RTX 4090, NVIDIA A40, and NVIDIA A10
GPUs. This enabled a comprehensive analysis of Vasuki’s
performance across various hardware configurations. Profil-
ing metrics included memory bandwidth, kernel execution
times, and interconnect transfer rates, all critical for un-
derstanding the efficiency of bin packing and offloading
strategies.

Unfortunately, we were not able to gain access to NVIDIA
A10 GPUs. However, to enable using A10s in simulation
testing, we treat profiling data from A40 as the same as A10
since the compute is similar between the two, as seen in
Table 1.

6.1.3 Workloads

Our evaluation employed traces representative of offline
inference scenarios, focusing on two datasets:

1. BWB (Bilingual Web Book): This dataset consists of
Chinese novels translated into English. With a low
Prompt-to-Decode token (P:D) ratio (< 1 on average),
this workload represents tasks where the translation
output is close to or longer than the input (Jiang et al.,
2022).

2. arXiv Summarization: This dataset involves summariz-
ing academic papers. However, this features a higher
P:D ratio, this workload reflects scenarios where the
output (summary) is significantly shorter than the input
(Cohan et al., 2018).

6.1.4 Models and Other Parameters

We tested context lengths up to 4096 tokens, capturing a
subset of realistic scenarios for both datasets while ensuring
compatibility with modern LLMs. We used LLama3-8B for
all experiments, which has 32 layers. Finally, the chunk size
was fixed to 512 for all the following experiments.

6.2 Results
6.2.1 Batch Size

First, we demonstrate in 2 and 3 that we can enable larger
batch sizes by having more GPU memory available.
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Figure 2. CDF of the amount of memory in bytes Vasuki was able

to offload to CPU memory in the BWB offline case using A10
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Figure 3. Batch size CDF for offline inference with the BWB trace
using A10

Memory saved per batch is calculated as

memory saved = number of requests in batch
xnumber of offloaded layers (1)

x size of decode layer

This significant amount of memory saving, where 99% of
the memory saved per batch is at least 14GB, which enables
batch sizes to be twice as large.

6.2.2 Makespan

4 and 5 demonstrate the makespan reduction using Vasuki
compared to Sarathi. Vasuki approaches the makespan of
Sarathi on A40 and outperforms by a consistent amount on
both single GPU RTX4090 and A10. More decode pressure
present in the BWB translation trace means our improved
memory allocation approach will better display its gains.

6.2.3 Cost

On the cost dimension, we show the cost-effectiveness of
Vasuki by comparing the QPS / cost in Figure 6. Vasuki is
an order of magnitude more cost-effective by this metric in
the summarization task since the makespans are similar but

5000071 gzm RTX4090 Sarathi
[ RTX4090 Vasuki

40000

30000

20000

Makespan (s)

10000

=)

arxiv bwb

Dataset

Figure 4. Comparing makespan of Sarathi and Vasuki with
RTX4090
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Figure 5. Comparing makespan of Sarathi and Vasuki

Vasuki uses much cheaper hardware. In the translation task,
Vasuki helps deal with the greater memory pressure and is
3.4x more cost-effective.

6.2.4 Correctness

We show that the current results are reasonable and correct in
simulation by examining the total offloading time compared
to the execution time of a single batch in Figure 7. Total
offloading time is consistently an order of magnitude smaller
than the total batch execution time, making it possible to
offload 30 of the 32 total layers in Llama3-8b.

7 DISCUSSION

In this paper, we begin to explore the opportunities to in-
crease throughput in memory-limited scenarios. However,
there are still several challenges to address in future work.

First, we wish to investigate further what configurations
may favor one offloading approach over another, to see if
the algorithm can be simplified further. We anticipate test-
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Figure 6. Comparing QPS/cost using the equation from 3.2 and
cost data from Table 1
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Figure 7. CDFs of model execution time (in s) and offloading time
(in ms), showing that we were able to ultimately offload 30 layers
without computation overlap using A10

ing with more models, hardware deployments, and longer
context lengths will help answer this.

Second, future work may help determine if we can im-
prove bin-packing by dynamically de-allocating blocks if
all blocks are not in use after prefill. If we are able to offload
more layers than we allocated from the previous iterations,
it could permit more requests to fit in the batch and further
increase throughput, especially in higher P:D situations like
summarization.

Third, supporting weight offloading will be critical to a
comprehensive offline serving solution. This will allow the
system to serve models that otherwise could not fit in mem-
ory. Fourth, scaling up to multiple GPUs will require some
scheduling consideration to find a good allocation scheme,
between data, tensor, and pipeline parallelism, especially
in the absence of high-speed interconnect. Works such as

Varuna give a direction for tackling this problem, including
focusing primarily on pipeline and data parallelism due to
the expected networking costs (Athlur et al., 2022).

Finally, we believe speculative decoding can be part of
a future offline serving solution, once weight offloading
is supported efficiently since it can better utilize compute
(Leviathan et al., 2023). Using an initial configuration ex-
plorer and some profiling of acceptance rates we can deter-
mine the best drafter model for throughput.

8 CONCLUSION

Offline LLM batch inference is a challenging problem that
currently has no first-class solution. We discuss the pri-
mary differences between online and offline LLM inference
serving and presented metrics that are crucial to the offline
serving case, which current systems do not explicitly opti-
mize on. Further, we discuss cost optimization in the context
of hardware choice and present challenges associated with
memory-limited hardware. To address these challenges, we
introduce Vasuki, a system that minimizes makespan and
maximizes QPS/cost for offline LLM batch inference via
two key techniques: KV cache offloading and bin packing
[todo: align with section 5]. In particular, Vasuki offloads
the KV cache associated with particular layers during the
generation of a decode token in order to reduce GPU mem-
ory pressure and increase the extent of batching. This is
supplemented by bin packing, which allows Vasuki to maxi-
mize the number of requests in each batch, resulting in an
overall decrease in makespan. Our evaluation shows Vasuki
provides a 9% end-to-end speedup for summarization tasks
and 36% end-to-end speedup for translation tasks compared
to SoTA on the same hardware. Vasuki also contributes to
a reduction in total cost, due to reducing active GPU time
by minimizing the makespan and by enabling the use of
cheaper hardware to approach the performance of hardware
with twice the memory capacity running a SoTA inference
system.
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A MILP FORMULATION OF OPTIMAL
REQUEST ORDERING FOR VLLM

Algorithm 3 MILP Formulation of Optimal Request Order-

ing
{Decision Variables}
x;+ € {0,1}: Binary variable indicating when request i
starts processing
eir € {0,1}: Binary variable indicating when request ¢
completes processing
yi+ € {0,1}: Binary variable tracking request i’s pres-
ence at time ¢
¢ € Z*: The maximum number of tokens the system can
hold at any scheduling step
S; € ZT: The maximum length of request i
M € Z+: Makespan variable (total processing time, unit
is scheduling batch steps)
{Objective: Minimize Total Processing Time}
min M
Request Initiation Constraint:
> e Tit = 1 Vi € I {Each request must start exactly
once}
Request Completion Constraint:
> iereit = 1 Vi € I {Each request must complete
exactly once}
Request Lifecycle Constraint:
€it4decodesteps, = Tig Vi € It € T {Exit time
matches start time plus decoding steps}
Makespan Tracking Constraint:
M > te;; Viel,te T {Trackmaximum completion
time, which is the makespan}
Request Presence Constraints:
Yit = 279 Tir = D et Cipr
Yit < D i<y Tir — -4 i {Track request’s active
duration}
System Capacity Constraint:
Eiez Yit - S; < c ¥Vt e T {Limit total tokens in sys-
tem}
Optimal request scheduling minimizing makespan num-
ber of batch steps
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